Lasonolide A: Structural Revision and Synthesis of the Unnatural (-)-Enantiomer

Eun Lee,* Ho Young Song, Jung Won Kang, Dae-Shik Kim, Cheol-Kyu Jung, and Jung Min Joo
School of Chemistry and Molecular Engineering, Seoul National University, Seoul 151-747, Korea

Received October 9, 2001

Lasonolide A (proposed structure: $\mathbf{1}$ or $\mathbf{2}$) is a novel macrolide isolated from the shallow water Caribbean marine sponge, Forcepia sp. ${ }^{1}$ It is a potent cytotoxin against the A-549 human lung carcinoma and P388 murine leukemia cell lines, and inhibits cell adhesion in the EL-4.IL-2 cell line. We synthesized compounds $\mathbf{1}$ and $\mathbf{2 ,}{ }^{2}$ and

found that neither corresponded with the structure of the natural product. Herein we wish to report a synthesis ${ }^{3}$ of the compound 3, the unnatural enantiomer of lasonolide A.

Preparation of the first tetrahydropyran fragment started with ethyl L-malate (4), which was converted into the enone 6 via the Weinreb amide derivative of the ester 5. Stereoselective reduction ${ }^{4}$ of 6 provided the syn diol, and regioselective reduction of the cyclic PMB acetal yielded the triol derivative 7. The β-alkoxyacrylate $\mathbf{8}$ was obtained from 7 via reaction with ethyl propiolate and PMBdeprotection. Radical cyclization reaction ${ }^{5}$ of the bromomethyl(dimethyl)silyl derivative 9 proceeded smoothly and the bicyclic product $\mathbf{1 0}$ was obtained as a single product ${ }^{6}$ (Scheme 1).

Reduction of the ester group and reaction with pivaloyl chloride provided the pivaloate derivative of $\mathbf{1 0}$, which was converted into the diol $\mathbf{1 1}$ via Tamao oxidation. ${ }^{7}$ Selective deprotection of the bis(TBS) derivative of $\mathbf{1 1}$ yielded the primary alcohol $\mathbf{1 2}$. Conversion of $\mathbf{1 2}$ into the lower homologue $\mathbf{1 3}$ required selenide substitution/ selenoxide elimination, osmium tetroxide dihydroxylation/sodium periodate cleavage, and sodium borohydride reduction. The aldehyde 14 was synthesized via TBS deprotection of 13, acetonide protection, benzyl ether deprotection, and oxidation with sulfur trioxide-pyridine complex. The aldehyde $\mathbf{1 4}$ was converted to the trans olefin $\mathbf{1 6}$ via Kocienski-Julia reaction ${ }^{8}$ with the sulfone $\mathbf{1 5 .}$ The sulfone $\mathbf{1 8}$ was then obtained after TBDPS deprotection, Mitsunobu-type substitution with 2-mercaptobenzothiazole (17), and selective oxidation ${ }^{9}$ (Scheme 2).

The Evans chiral imide 19 served as the starting material for the synthesis of the second tetrahydropyran fragment. The aldol product from the reaction of the (Z)-boron enolate of 19 and benzyloxyacetaldehyde was converted into the hydroxy enone $\mathbf{2 0}$ via vinyl Grignard reaction of the corresponding Weinreb amide. ${ }^{10}$ After stereoselective reduction of $\mathbf{2 0}$, the product syn diol was converted into the dibenzyl ether $\mathbf{2 1}$ via regioselective reduction of the corresponding benzylidene acetal. Osmium tetroxide dihydroxylation/sodium periodate cleavage followed by sodium borohydride reduction provided a primary alcohol, from which the TBS ether $\mathbf{2 2}$ was obtained via selective silylation. Reaction of $\mathbf{2 2}$ with ethyl propiolate provided the corresponding β-alkoxyacrylate, which was converted into the bromide 23 via TBS deprotection and

Scheme 1^{a}

${ }^{a}$ 1) 1.03 equiv $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}, 0.05$ equiv NaBH_{4}, THF, rt $\left.1 \mathrm{~h} ; 2\right) 1.0$ equiv $\mathrm{Bu}_{2} \mathrm{SnO}$, benzene, reflux $\left(-\mathrm{H}_{2} \mathrm{O}\right), 16 \mathrm{~h} ; 2.0$ equiv $\mathrm{BnBr}, 1.0$ equiv TBAI, reflux, 4 h ; 3) 3.0 equiv $\mathrm{MeNH}(\mathrm{OMe}) \cdot \mathrm{HCl}, 3.0$ equiv $\mathrm{Me}_{3} \mathrm{Al}, \mathrm{THF}, 0^{\circ} \mathrm{C}$ to rt 5 h ; 4) 3.0 equiv $\mathrm{H}_{2} \mathrm{CC}(\mathrm{Me}) \mathrm{MgBr}$, THF, rt 5 h ; 5) 1.1 equiv $\mathrm{Et}_{3} \mathrm{~B}, 1.1$ equiv NaBH_{4}, THF- $\mathrm{MeOH}(4: 1),-78{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}$; 6) 2.5 equiv (p $\mathrm{MeO}) \mathrm{PhCH}(\mathrm{OMe})_{2}, 0.05$ equiv CSA, DCM, rt 1 h ; 7) 2.5 equiv DIBAL, DCM, rt 5 h ; 8) 1.5 equiv $\mathrm{HCCCO}_{2} \mathrm{Et}, 0.2$ equiv NMM, MeCN , rt $2 \mathrm{~d} ; 9$) 1.1 equiv DDQ, $\mathrm{DCM}-\mathrm{H}_{2} \mathrm{O}$, rt 1 h ; 10) 1.2 equiv $\mathrm{BrCH}_{2} \mathrm{SiMe}_{2} \mathrm{Cl}, 1.4$ equiv TEA, 0.05 equiv DMAP, benzene, rt 30 min ; 11) 1.5 equiv $\mathrm{Bu}_{3} \mathrm{SnH}, 0.2$ equiv AIBN, benzene $(0.02 \mathrm{M})$, reflux, 5 h (syringe pump, 4 h).

Scheme $\mathbf{2}^{a}$

${ }^{a}$ 1) 1.0 equiv LiBH_{4}, ether, rt 6 h ; 2) 1.5 equiv $\mathrm{PivCl}, 0.05$ equiv DMAP, 2.0 equiv pyridine, $D C M, r t 8 h ; 3$) ex. $30 \% \mathrm{H}_{2} \mathrm{O}_{2}, 3.0$ equiv $\mathrm{KF}, 4.0$ equiv $\mathrm{KHCO}_{3}, \mathrm{THF}-\mathrm{MeOH}(1: 1)$, rt 36 h ; 4) 3.0 equiv TBSOTf, 5.0 equiv 2,6lutidine, DCM , rt 8 h ; 5) 0.2 equiv CSA , $\mathrm{MeOH}, 0{ }^{\circ} \mathrm{C}, 90 \mathrm{~min}$; 6) 1.3 equiv $\left(o-\mathrm{NO}_{2}\right) \mathrm{PhSeCN}, 1.3$ equiv $\mathrm{Bu}_{3} \mathrm{P}$, THF, rt 2 h ; ex. $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$, rt 5 h ; 7) 0.05 equiv $\mathrm{OsO}_{4}, 3.0$ equiv NMO , acetone $-\mathrm{H}_{2} \mathrm{O}(3: 1)$, rt $2 \mathrm{~d} ; 3.0$ equiv NaIO_{4}, rt 5 h ; 8) 2.0 equiv $\mathrm{NaBH}_{4}, \mathrm{EtOH}, 0{ }^{\circ} \mathrm{C}, 10 \mathrm{~min}$; 9) concd HCl , MeOH , rt $5 \mathrm{~h} ; 10$) 1.5 equiv $\mathrm{Me}_{2} \mathrm{C}(\mathrm{OMe})_{2}, 0.05$ equiv PPTS, acetone, rt 2 $\mathrm{h} ; 11) \mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}$, rt 2 h ; 12) 5.0 equiv $\mathrm{SO}_{3} \cdot$ pyridine, 10 equiv TEA, DMSO-DCM ($1: 1$), $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; 13) 1.8 equiv $\mathbf{1 5}, 1.8$ equiv LHMDS, THFHMPA (5:1), $-78^{\circ} \mathrm{C} ; 1.0$ equiv $\mathbf{1 4},-78^{\circ} \mathrm{C}$ to $\mathrm{rt} 12 \mathrm{~h} ; 14$) 1.5 equiv TBAF, THF, rt $3 \mathrm{~h} ; 15$) 1.5 equiv $\mathrm{Ph}_{3} \mathrm{P}, 1.5$ equiv DIAD, 1.5 equiv 17, THF, $0^{\circ} \mathrm{C}$, 1 h ; 16) 2.0 equiv $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24}, 30$ equiv $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{EtOH}, 0^{\circ} \mathrm{C}, 2 \mathrm{~h}$.
bromide substitution. Radical cyclization of $\mathbf{2 3}$ proceeded uneventfully to give the tetrahydropyranyl intermediate $\mathbf{2 4}$ in high yield. Benzyl deprotection via hydrogenolysis and silylation provided the $\operatorname{bis}(T B S)$ ether analogue of $\mathbf{2 4}$, which was converted into the corresponding aldehyde via lithium borohydride reduction and oxidation with sulfur trioxide-pyridine complex. The transiodovinyl derivative 25 was obtained by adopting the Takai protocol. ${ }^{11}$ Generation of the primary hydroxy group via selective TBS deprotection and oxidation with sulfur trioxide-pyridine led to the production of the corresponding aldehyde in good yield, from

${ }^{a}$ 1) 1.1 equiv n - $\mathrm{Bu}_{2} \mathrm{BOTf}$, 1.2 equiv TEA, $\mathrm{DCM}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min} ; 1.2$ equiv $\mathrm{BnOCH}_{2} \mathrm{CHO},-78$ to $0{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$; 2) 3.5 equiv $\mathrm{MeNH}(\mathrm{OMe}) \cdot \mathrm{HCl}$, 3.5 equiv $\mathrm{Me}_{3} \mathrm{Al}$, THF, $0^{\circ} \mathrm{C}$ to rt 8 h ; 3) 3.0 equiv $\mathrm{H}_{2} \mathrm{CCHMgBr}$, THF, rt 3 h ; 4) 1.2 equiv $\mathrm{Et}_{3} \mathrm{~B}, 1.2$ equiv NaBH_{4}, THF- $\mathrm{MeOH}(2.5: 1),-78{ }^{\circ} \mathrm{C}, 5$ h ; 5) 1.5 equiv, $\mathrm{PhCH}(\mathrm{OMe})_{2}, 0.05$ equiv $\mathrm{CSA}, \mathrm{DCM}$, rt 1 h ; 6) 2.5 equiv DIBAL, DCM, rt 1 h ; 7) 0.05 equiv $\mathrm{OsO}_{4}, 3.0$ equiv NMO, acetone $-\mathrm{H}_{2} \mathrm{O}$ (3:1), rt $16 \mathrm{~h} ; 2.0$ equiv NaIO_{4}, rt $1 \mathrm{~h} ; 8$) 1.5 equiv $\mathrm{NaBH}_{4}, \mathrm{EtOH}, 0^{\circ} \mathrm{C}, 30$ \min; 9) 1.1 equiv TBSCl, 1.3 equiv imidazole, $\mathrm{DCM}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; 10) 1.5 equiv $\mathrm{HCCCO}_{2} \mathrm{Et}, 0.2$ equiv $\mathrm{NMM}, \mathrm{MeCN}$, rt $2 \mathrm{~d} ; 11$) concd $\mathrm{HCl}, \mathrm{MeOH}$, $0^{\circ} \mathrm{C}$, 90 min ; 12) 1.5 equiv $\mathrm{CBr}_{4}, 1.4$ equiv $\mathrm{Ph}_{3} \mathrm{P}, 3.0$ equiv pyridine, DCM , $0{ }^{\circ} \mathrm{C}$ to rt 2 h ; 13) 1.5 equiv $\mathrm{Bu}_{3} \mathrm{SnH}, 0.2$ equiv AIBN, benzene $(0.02 \mathrm{M})$, reflux, 4 h (syringe pump, 3 h); 14) H_{2}, $\mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}$, rt 3 h ; 15) 3.0 equiv TBSOTf, 5.0 equiv 2,6-lutidine, $D C M$, rt 3 h ; 16) 1.2 equiv LiBH_{4}, ether, rt 12 h ; 17) 4.0 equiv $\mathrm{SO}_{3} \cdot$ pyridine, 8.0 equiv TEA, DMSO-DCM (1:1), $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; 18) 7.5 equiv $\mathrm{CrCl}_{2}, 2.0$ equiv CHI_{3}, dioxane-THF (6:1), rt 10 h ; 19) 0.2 equiv CSA, MeOH , rt 1 h ; 20) 4.0 equiv $\mathrm{SO}_{3} \cdot$ pyridine, 8.0 equiv TEA, DMSO-DCM (1:1), $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; 21) 1.5 equiv $\mathrm{MeO}_{2} \mathrm{C}(\mathrm{Me}) \mathrm{CHPO}-$ $\left(\mathrm{OCH}_{2} \mathrm{CF}_{3}\right)_{2}, 1.5$ equiv KHMDS, 2.0 equiv 18 -c- 6 , THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h} ; 22$) 2.5 equiv DIBAL, DCM, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$; 23) 20 equiv MnO_{2}, DCM, rt 12 h .

Scheme 4^{a}

${ }^{a}$ 1) 1.0 equiv cyclohexanone, 1.5 equiv $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$, ether, $0{ }^{\circ} \mathrm{C}$ to rt 20 h ; 2) 3.0 equiv $\mathrm{BH}_{3} \cdot \mathrm{DMS}$, 3.0 equiv $\mathrm{B}(\mathrm{OMe})_{3}$, THF, $0{ }^{\circ} \mathrm{C}$ to rt 8 h ; 3) 1.2 equiv TBSCl, 1.5 equiv imidazole, $D C M$, rt 1 h ; 4) 3.0 equiv 30 , 1.0 equiv NaH , THF, rt 1 h ; 5) 1.3 equiv TBSCl, 1.5 equiv imidazole, 0.05 equiv DMAP, DCM, rt 12 h ; 6) HF•pyridine, pyridine, THF, rt 1 h ; 7) 1.5 equiv $\mathrm{Ph}_{3} \mathrm{P}, 1.5$ equiv $\mathrm{I}_{2}, 3.0$ equiv imidazole, THF, rt $\left.1 \mathrm{~h} ; 8\right) 2.0$ equiv $\mathrm{Ph}_{3} \mathrm{P}$, MeCN , reflux, 16 h .
which the (Z)-enoate 26 was prepared following the Still procedure. ${ }^{12}$ The aldehyde 27 was in turn obtained from 26 (Scheme 3).

Synthesis of the side chain fragment started from D-malic acid (28), which was converted into the ketal 29 after selective ketal formation, borane reduction, and TBS protection. After reaction of $\mathbf{2 9}$ with the alcohol $\mathbf{3 0}$, the primary alcohol $\mathbf{3 1}$ was obtained via TBS protection and selective TBS deprotection. The phosphonium salt $\mathbf{3 2}$ was prepared from the alcohol $\mathbf{3 1}$ via iodide substitution (Scheme 4).

Julia-Julia reaction between the sulfone $\mathbf{1 8}$ and the aldehyde 27 generated the trans double bond producing the intermediate $\mathbf{3 3}$. Careful acetonide deprotection and selective silylation led to the formation of the corresponding secondary alcohol, and esterification with the acid $\mathbf{3 4}$ led to the preparation of the trans- β-stannylacrylate 35: the undesired cis- β-stannylacrylate isomer was easily separated and recycled under basic conditions. Intramolecular Stille coupling reaction of $\mathbf{3 5}$ proceeded uneventfully to provide the macrolactone 36, which was converted into the aldehyde 37. Wittig reaction between the ylide prepared from $\mathbf{3 2}$ and the aldehyde $\mathbf{3 7}$ led to the product $\mathbf{3}$ after subsequent TBS deprotection (Scheme 5).

Scheme 5^{a}

${ }^{\text {a }}$ 1) 1.2 equiv LDA, THF, $-78^{\circ} \mathrm{C}$; 1.3 equiv 27, THF, $-78^{\circ} \mathrm{C}$ to rt 10 h; 2) $0.005 \mathrm{M} \mathrm{CSA}, \mathrm{MeOH}, 50$ equiv $\left(\mathrm{HOCH}_{2}\right)_{2}$, rt $\left.8 \mathrm{~h} ; 3\right) 3.0$ equiv TBSCl , 5.0 equiv imidazole, DCM , rt 2 h ; 4) 3.0 equiv 34, 4.0 equiv DIC, 2.5 equiv DMAP, DCM, rt 20 h ; 5) 0.1 equiv $\mathrm{Pd}_{2} \mathrm{dba}_{3}$, 10 equiv DIPEA, NMP (0.004 M), rt 16 h ; 6) 5.0 equiv $\mathrm{LiEt}_{3} \mathrm{BH}$, THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$; 7) 5.0 equiv $\mathrm{SO}_{3} \cdot$ pyridine, 10 equiv TEA, DMSO-DCM $(1: 1), 0^{\circ} \mathrm{C}, 2 \mathrm{~h}$; 8) 6.0 equiv 32, 5.5 equiv KHMDS, THF, $-78^{\circ} \mathrm{C}, 1.0$ equiv $37,5 \mathrm{~min} ;-78^{\circ} \mathrm{C}$ to rt 10 h ; 9) ex. HF•pyridine, ex. pyridine, THF, rt 16 h.

Comparison of the NMR spectra revealed that $\mathbf{3}$ represented the correct structure of lasonolide A except the specific rotation, which was opposite to the reported value for the natural product. ${ }^{13}$ In the present studies, an excellent stereocontrol was achieved in the introduction of the quaternary center at $\mathrm{C}-22$ via 6 -endo, 6 -exo tandem radical cyclization reactions of a β-alkoxyacrylate.

Acknowledgment. We thank the Ministry of Science and Technology, Republic of Korea, and Korea Institute of Science and Technology Evaluation and Planning for a National Research Laboratory Grant (1999). Brain Korea 21 graduate fellowship grants to H.Y.S. and C.K.J. are gratefully acknowledged.

Supporting Information Available: Selected experimental procedures and spectral data for $\mathbf{1 , 2}, \mathbf{3}$, and other isomers, and further schemes and references (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) Horton, P. A.; Koehn, F. E.; Longley, R. E.; McConnell, O. J. J. Am. Chem. Soc. 1994, 116, 6015-6016.
(2) See the Supporting Information.
(3) For synthetic studies in the literature, see: (a) Beck, H.; Hoffmann, H. M. R. Eur. J. Org. Chem. 1999, 2991-2995. (b) Nowakowski, M.; Hoffmann, H. M. R. Tetrahedron Lett. 1997, 38, 1001-1004. (c) Gurjar, M. K.; Chakrabarti, A.; Venkateswara Rao, B.; Kumar, P. Tetrahedron Lett. 1997, 38, 6885-6888. (d) Gurjar, M. K.; Kumar, P.; Venkateswara Rao, B. Tetrahedron Lett. 1996, 37, 8617-8620.
(4) Chen, K.-M.; Gunderson, K. G.; Hardtmann, G. E.; Prasad, K.; Repic, O.; Shapiro, M. J. Chem. Lett. 1987, 1923-1926.
(5) For selected examples of β-alkoxyacrylate radical cyclizations, see: (a) Lee, E.; Park, C. M.; Yun, J. S. J. Am. Chem. Soc. 1995, 117, 80178018. (b) Lee, E.; Jeong, E. J.; Kang, E. J.; Sung, L. T.; Hong, S. K. J. Am. Chem. Soc. 2001, 123, 10131-10132. (c) For further references, see: Lee, E. In Radicals in Organic Synthesis; Renaud, P., Sibi, M. P., Eds.; Applications, Vol. 2; Wiley-VCH: Weinheim, 2001; pp 303-333.
(6) For selected examples of similar 6 -endo cyclization reactions, see: (a) Wilt, J. W. J. Am. Chem. Soc. 1981, 103, 5251-5253. (b) Koreeda, M.; George, I. A. J. Am. Chem. Soc. 1986, 108, $8098-8100$.
(7) Tamao, K.; Kakui, T.; Akita, M.; Iwahara, T.; Kanatani, R.; Yoshida, J.; Kumada, M. Tetrahedron 1983, 39, 983-990.
(8) Blakemore, P. R.; Cole, W. J.; Kocienski, P. J.; Morley, A. Synlett 1998, 26-28.
(9) Williams, D. R.; Brooks, D. A.; Berliner, M. A. J. Am. Chem. Soc. 1999, 121, 4924-4925.
(10) For similar reaction sequences, see: Evans, D. A.; Kaldor, S. W.; Jones, T. K.; Clardy, J.; Stout, T. J. J. Am. Chem. Soc. 1990, 112, 7001-7031.
(11) Takai, K.; Nitta, K.; Utimoto, K. J. Am. Chem. Soc. 1986, 108, 74087410.
(12) Still, W. C.; Gennari, C. Tetrahedron Lett. 1983, 24, 4405-4408.
(13) The reported value ${ }^{1}$ for natural lasonolide $\mathrm{A}:[\alpha]_{\mathrm{D}}+24.4\left(c 0.045, \mathrm{CDCl}_{3}\right)$. The value obtained for 3: $[\alpha]^{20} \mathrm{D}-24.1\left(c 0.055, \mathrm{CDCl}_{3}\right)$. The unnatural enantiomer 3 was obtained in 0.68% total yield from ethyl L-malate (4) in 36 steps in the longest sequence.
JA017265D

